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The problem of the stress distribution in a strip with a rectilinear arbitrarily 

oriented thin- walled elastic inclusion of finite length is considered. The 
problem is reduced to finding the solution of a system of four singular integral 

equations by using a Fourier integral transform. Numerical values are present- 
ed for the stress intensity coefficients on the endfaces of the elastic inclusion. 

The state of stress of a piecewise-homogeneous plane with a thin- walled 
elastic inclusion of finite length was investigated in [l, 21. A solution of the 
corresponding periodic problem is obtained in [3]. 

1. The elastic equilibrium of a homogeneous isotropic strip of width H with an 
arbitrarily lacated thin-walled inclusion of width 2 h localized along the segment 

[a, bl within the strip (Fig. I.) is considered. 

Fig. 1 
Besides the Cartesian XOY coordinate system, let us introduce a son coordinate 

system obtained by rotating the SOY system through an angle Q. Let {Gb,,, Uyy, 

a,,} and ((J=, b,,,,, bsn} be the stress tensor components defined in the Xoy and 
son coordinate systems, respectively. 

The strip is subjected to a homogeneous stress field at infinity orx (=I Y) - 

iory(m, Y> = 41- rq,, forces distributed along the side faces of the strip 6,,, - 

i% = gj (2) on Lj (j = 1, 2), where limi,,.gj (x) = 93 - iq,, as well as 
systems of concentrated forces P, and moments M, applied at the internal points 

of the strip ah-, and b I , respectively (k = 1, . . . , n; I = 1, . . . , m>- The 

inclusion is free of external loads. Let us determine the stress distribution in the strip 

in the neighborhood of the inclusion. 
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The armpit regarding the small thickness of the inclusion permits the co&&r 

from that its presence can be modeled by a stress jump and derivatives of the displace- 
ment in the homogeneous strip on a segment coincident with the middle Line of the 

real inclusion, i.e., 

b, (& -i-O) - iu,, (s, -f-O)1 - lb,, (8, -0) - icf,, (s, -0)i = (3.1) 

ft 6) - ifi (4 

lu’ (St +O) $ iv’ (s, +O)l - [u’ (s, -0) -/- iv’ (s, -0)l = f3 (s) + if4 (27) 

fj (S) = 0, S E [a, bl; U’ = lh / &, 27’ c=: 8v / 8.9 

Here U, u are the displacements; the superscripts plus and minus characterize the 

stress and displacement field components of the strip on the upper and lower edges of 
the inclusion, respectively. 

We have four conditions [3] for the interaction between the thin-walled elastic 

inclusion and the surrounding medium to determine the unknown functions fj (s) (i = 

1 * - , 4) : 
k ;u (s, -0) + u (s, +O)J I f% = 2fkl@s - bl @,,, 6% -0) + (3.2) 

6, 6% i-011 

Iv (s, -0) - u fs, +O)J / h = - 2kzo@, + ho P,n 6, -0) + u,, (s, -c-O)1 

d [u (s, -4 + v (s, +O)l 1 f% + [u (s, -0) + 2.5 (s, +O)J/ h = 

k, ($7 -0) + @a, 6% +w po 

a ru (s, -0) - u 6% -p)f I as = k,, b,, (s, +O) - onA (s, -0)3 

Here for plane strain Xj = 

/ (1 + vi); Ej, vj 

3---4vj, for the generalized plane stress xi = (3 - Vi) 

ace, respectively, the elastic modulus and Poisson’s ratio of the 
material of the inclusion (i = 0) and the matrix (1 = I), and N, is the normal 
stress on the endface s = a of the inclusion. 

2. Let us represent the solution of the problem s in the form of the sum of solu- 

tions so of the corresponding problem without an inclusion, and 8 * of the problem 
of the elastic equilibrium of a strip with a mathematical slit along the segment [a, bJ 
under the conditions 

u?zn* 6% t 0) = u,, (8, * 0) - u,,* (s) 
(2.1) 

o,* (St _tO) = o, (s, *o) - am0 (s} 

u*’ (s, +o) = u’ (s, t-0) - z&O’ (s) 

u* (s, +O) = V’ (s, &F) - 8’ (s) 

o,,* (TO) = o,,* (z, H) = 0, oXy* (z, 0) = u,* (5, H) = 0 
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We note that the stress jump and the derivatives of the displacement on the edges 
of the segment equal the corresponding jumps on the edges of the inclusion, 

We seek the stress function O* (s, n) in the form of the sum of two functions 

a* (a, n) = CD1 (a, n) + 0% (5, y) (2.2) 

Here @* (s, n) defines the solution of 6 of the problem for an infinite plane with 
jUm~fj(s)(f=l, .,., 4) in the stresses and derivatives of the displacement at 
the appropriate segment, and db2 (z, y) is the stress function for a continuous inclus- 
ion subjected at the side faces to forces equal in magnitude but opposite in sign to 
the stresses defined by the function a1 (s, n) on Lj (j = 1, 2). 

According to [4], the integral representation of the stress function @’ (s, ?2) has 
the form cn 

CD’ (s, n) = -&- 1 G$ (11, n) e”‘Js dq 
(2.3) 

--00 

G1+ (rl, a) = [A, (q) + n I q [ A, (q)l e-W, n > 0 

G,- h n) - [Aa @I) + n I r) I 4 ($1 elq@, n < 0 

Here Af (T$ (j = 1, . . . , 4) are complex functions. 

Using the expressions for the stress tensor components and the derivatives of the 
displacement vector in terms of the function 0’ (s, n) , satisfying the conditions 
(1. l), and applying the inverse Fourier transform, we obtain an algebraic system of 
equations to determine Ai (q) (j = 1, . . . , 4) in the form 

- q2 1-4, (11) - Aa (q)] = F,* (r) 

fr 1 T I [-- A, (4 t 4 (4 - A, (d - 4 (rl)] = F,* 61) 

q2 IA, (4 - 2A2 (4~ - -42 (rl) - 24 ($1 = [&* (7) + 

k2f’1* (rl)J / h 
iq I r I IA, (rl) + 34 (d - A, (4 - 34 ($1 = 

Vi* (4 + W,* @1)1/ kl 

Fj* (q) - f fj (t) eiqf dt, kl = (w 

a 

k2 = t3 - ‘d k (5 + %I 

-K--’ 2=Tg-- 

The expressions for the characteristics of the stress-strain state in the problem S’ 
in terms of the unknown jumps fj (s) (J’ = 1, . . , , 4) have the form 

Ed &‘, v“) zzzz 

Pu (f - S, n)7 PIY (t - S, n)}fj (f) dt 
j=l a 

Here Pmn, P,, P, are functions having both a singular and a regular part in the 

limitcase n-+0. 
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The function 0s (z, y) has the representation [4] 
00 

Qa(s, Y) = & 5 Gs(E, ~)e+dE 

Gs (E, Y) = [B% + ~YB, (E)J e-ku + [B, (U + WJ, (E)J ~EJ 

Here Bj (E) (i = 1, . . . , 4) are unknown complex functions 
Introducing the notation cI = cos 0, fl = sin 0, we obtain from (2.1) - 

(2.3) 

aw 
-as= 4 (G - $!$-) + (aa -- fiz) a% on Lj (i = 1, 2) 

Hence, an algebraic fourth-order system follows for the determination of the un- 

kIlOWIlS Bj (E) (i = ‘I, e m m 7 4). Solving this system we represent the solutionof 
Sa in the form 

(O”,n, us’, V”‘} = 

4 

ES 
f bc?mn(tr S, n), Qu(tt ST n), 00 (tt so IZ))fj(Qdt 

j=l a 

Here o,,, Q,, f& are regular functions. 
We determine the stress-strain state of the body under consideration at any of its points 

by means of the solutions of S”, S’, S2 : 

unn (s, n) = @,,o (St n) + dnnl (s, d t- flnn2 (& n) 
(2.4) 

O,, ($7 n) = 0s; (s, n) + 0s; 6, n) + O,,a (s, n) 

u’ (s, n) = uO’ (s, n) + Ul’ (s, n) + us’ (s, n) 

u’ (s, n) = u”’ (s, n) -j- 29 (s, n) + 79’ (s, n) 

Passing to the limit in (2.4) as IL -+ +0 , we obtain the following expressions for 
the stress and the derivatives of the displacement on the upper edge of the inclusion 

(values of the corresponding quantities on the lower edge of the inclusion are determin- 

ed from (1.1) and (2.5)): 

O,, (s7 +O) = OnnO (a) + l/s fr (s) - W, (s) - qt4 (s) + ICI (3) (2*5) 

@sn 6, +o) = @sn' (s) + l/z f2 (8) + W, (s) - n,t, (s) + kz (s) 

u’ (ST t-0) = u=“(s) + ‘1s f3 (d + m,t, (8) + m,t4 (s) + k3 (s) 

ZJ’ (8, +o) = ~“‘is) + l/s f4 (s) + m,t, (s) - m,t, (s) + k4 (s) 

: f.(t)& 
ti(s) = f\ --2___, 

t--s k,(S) = fJKij(S, t)fj(t)dt (i = 1,**.,4) 

a j-1 a 

K,j (S, f) = S,j (/h, CIS, t?) f S,j (PA’, CM, t) COS 2 0 - 

S,j (BS, CLS, t) sin 2 0 

Kzj (S, t> = Szj (B s, as, t) sin 2 0 + S,j (fh, as, t) cos 2 0 
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Jflj (~3 Y, t, Ef z (AJf1+ - A&l-) / A0 
M,, (5, y, t, r;) -- (AIjHzS - A,,$,-) / (2 Ao) (j - I, 2) 

Mij (~3 y, t, $,) zzz (-I)’ IA~~Hi* + A*,Hf-J / (2 A,) 
i TZ 3, 4; j 7= 1, 2 (j _- f, k 7 2; j ~1 2. k z 1) 

{Ali, Ati, A,;, A,i} z-- (A,, AR - A,, - As) CPA -t. 
iA,, A,. - Am - A*} (I:- 

(2.6) 

(2.7) 

The functions Mij (z, y, t, 5) (i =- ‘19 . . . , 4) are determined by means of(2. 7) 

for Tp+ = + sin y+, CF_ 

second to 7== 4). 
-ym -& sin y_ (the first sign corresponds to j = 3 and the 

3. The relationships (2.5) and the interaction conditions between the thin-walled 
elastic inclusion and the matrix (1.2) result in a system of singular integral equations 
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f3 (4 = - k3Ofl (4, s E la, 61 
Rx t-4 = h&l (4 -h&3 (4, R, (4 = b&t (4 + W4 (4 
R, (s) = h32kl (s), F, (s) = [kloN, - EL==’ (s) - k20q$ ($1 / A, 

Fz (s) = p. b”’ (s) - bn; (s) I p. - ca i (2 h)l I’ As 

F, (s) = bnn” (s) -t_ da / (2 hk,,) - Y&J / A, 

&I = (4 m, - k,, / k,) i (4 ill), Al2 = k20 I Al7 h,, = 1 I Al 

3+2x = khm2 - ml)lL42, A22 = l/A,, A23 = pofb 
AsI = ml / A, 

A,, = 1 / A,, A, = kl, / (2 hAI), 

A3 = % / (2 WI 

The required ~ncti~ satisfy 

b 
P 

the additional conditions (3.2) 

3 fj(t) dt == A! (1 = 1, . . ., 4) 

:‘=O, A2=2h(Nb-_M,), A~=Q,--c,, A”==&--da 

(3.2) 

The normal stresses on the inclusion endfaces, as well as the displacements c,, “I, 
(s = a, b) of the lower point of the endface of the inclusion relative to its upper 

points are evaluated by means of formulas in 131. 
Iu the case of an absolutely rigid inclusion E, --f 00 ) the system (3.1) is convert- 

ed to the form 

rT7& (s) - kg (s) = -DO’ (s), In2ta (s) - /c* (s) = -z&O (s) (3.3) 

fs b) = f4 (d = 0, s E !a, b] 

When E, ---) 0, we obtain a system of singular integral equations for a crack in the 

strip 
nlh (4 + k, (4 = a,," (s), n1t3 (4 -I- is, fs) = %sO (4 (3.4) 
fl (4 = fa (4 = 0, s fz la, bl 

Equations (3.4) agree with the results obtained in [5] 
If H is allowed to tend to infinity in the integral equations (3.1)‘ then we obtain 

the solution of the problem for a half-plane with an inclusion. In this case the 

Fredholm kernels ASij (I, Y, & 5) (2.6) are evaluated in closed form, 

4. We seek the solution of the system of singular integral equations (3.1) in the 
form 

E = (2 s - a - b) / (b - d) 

Here T, (E> are Chebyshev (Tschebyscheff) polynomials of the first kind. Substituting 
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(4,1) into conditions (3.2) and integrating, we obtain A,’ = Aj / j&F (b - &)I. 

Substitution of the seriti (4.1) into the system of integral equations (3,l) and the 
ordirwy procedure of the method of orthogonal polynomial [S, 71 result in a system of 

algebraic equations TV determine the desired expansion coefficients: 

4 

c 
An3 = - k,od,’ (k = 1, 2, . . .) 

j=l 

Here Uk (5) are Chebyshev polynomials of the second kind, 61, = 0 for even k 
and & = ZLItk for add k. 

As an illustration, let us consider the case of equlibrium of a strip with a thin-walk 
ed elastic inclusion of length 2a located on the line of symmetry of a strip subjected 
to constant normal forces on its faces nvXl (x, 0) = ayy {r, H) = 4. 

In this case Aj = 0, (pp (5) = Fp IL), F2 (51 = 0 (j = 1, . . ., 4; P = 1, 2, 31, 

and Ii’, (c) and F& (c) are odd functions, There then follows from the system (4.2) 

C4*3) 
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The stress intensity coefficients at the right endface of the inclusion are determined 
from the formulas 

(k-i* (a), k-s* (a)) =5__-o lim [l/a - s {on, (8, f O), (Jsn (8, zk Qll 

{k,, (4, k+2 (a)} =sb;M[h - a l%n h O), us, b, ‘311 

In the case under consideration, the system 
of singular integral equations is solved numeric- 

ally. To achieve a 2% accuracy in the calcula- 

tions for different values of the relative width of 
the strip H / a from 15 to 40 terms in the 
expansion (4.3) are required. The convergence 

of the calculation process was investigated by 

comparing the last and its preceding approxima- 
tions. Results of a calculation of the dependence 

of the stress intensity coefficients kl and k, 

f0’ fo* & on the relative rigidity of the inclusion E. / El 

Fig. 2 

E&i are represented in Fig. 2. The solid line corres- 

ponds to k, and the dashed one to k 1. 
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