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The problem of the stress distribution in a strip with a rectilinear arbitrarily
oriented thin-walled elastic inclusion of finite length is considered. The
problem is reduced to finding the solution of a system of four singular integral
equations by using a Fourier integral transform, Numerical values are present-
ed for the stress intensity coefficients on the endfaces of the elastic inclusion,

The state of stress of a piecewise-homogeneous plane with a thin-walled
elastic inclusion of finite length was investigated in [1,2]. A solution of the
corresponding periodic problem is obtained in 3],

1. The elastic equilibrium of a homogeneous isotropic strip of width H with an
arbitrarily located thin-walled inclusion of width 2 & localized along the segment
la, b] within the strip (Fig. 1) is considered,
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Besides the Cartesian zoy coordinate system, let us introduce a son coordinate
system obtained by rotating the x0y system through an angle . Let {JUY SN
0.y} and {O4ss Opn» Oan} be the stress tensor components defined in the o0y and
son coordinate systems, respectively.

The strip is subjected to a homogeneous stress field at infinity Oy (o, Y) —
i0,,(c0, y) = g, — ig,, forces distributed along the side faces of the strip 0, —
i0,, = g @) onL;(j=1,2), where lim,.g; (x) = g3 — iqy, as well as
systems of concentrated forces P, and moments M, applied at the internal points
of the strip a; and b, , respectively (k =1, . ... 1 =1, ..., m). The
inclusion is free of external loads. Let us determine the stress distribution in the strip
in the neighborhood of the inclusion.
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Stress distribution in a strip 588

The assumption regarding the small thickness of the inclusion permits the consider
from that its presence can be modeled by a stress jump and derivatives of the displace-
ment in the homogeneous strip on a segment coincident with the middle line of the
real inclusion, i,e.,

[-o'nn (S» +0) - icsn (S, '+O)] - [Gnn (87 _0) - iGm (S, "“0)' = (1. 1)

fi (8) — ify (s)

W' (s, +0) + &' (s, +O)] — [ (s, —0) -+ " (s, —O)] = F;3 (s) + ify (s)
fi) =0, s&la, bl; u' = 0u/ds, vV = dv/ ds

Here u, v are the displacements; the superscripts plus and minus characterize the
stress and displacement field components of the strip on the upper and lower edges of
the inclusion, respectively,

We have four conditions [3] for the interaction between the thin-walled elastic
inclusion and the surrounding medium to determine the unknown functions f; (s) (j =
1, ..., 4):

dlu (s, —0) -+ u (s, +0)]/ 8s = 2ky0; — kap [0y, (5, —0) + (1.2

O, (s, +0)]
[v (s, ""O) —v s +O)} [h=— Zkzods + k1o L (s, ""0) + Oon (s, -{-—0)}

0lv (s, —=0) + v (s, +0)1/ 3s + [u (s, —0) - u (s, +0)I/ b =
[Gsn (s, ""0) + Oy, (s, "}"O)I/ Ko
0Tu (s, —0) — u (s, +0)1/ 8s = kg, lo,, (5, +-0) — 0, (s, —0)]

k4

00 = Na — 37 { 00 (t, — 0) — 0un ¢, +0)]dt

(4]

Fio = (1 + %0)/(8pe)s koo = (3 — %,)/(8po)

kao = [{kao)® — (K10)?1/ ki, wj = E; /12 (1 4 v))]
Here for plane strain %; = 3—4v;, for the generalized plane stress x; = (3 — v;)
/ (1 4+ v;); Ej, v; are, respectively, the elastic modulus and Poisson's ratio of the
material of the inclusion (j = 0) and the matrix (j = 1), and N, is the normal
stress on the endface s = a of the inclusion,

2. Let us represent the solution of the problem S in the form of the sum of solu-
tions S° of the corresponding problem without an inclusion, and S * of the problem
of the elastic equilibrium of a strip with a mathematical slit along the segment [a, b]
under the conditions

(2.1
T (s, 0) =0, (s, 0 —0,,° (5
Usn* (s iO) = O4, (s, _—}:0) —_ O'mo (3)
w* (s, £0) = u' (s, 40) — u® (s)
v* (s, +0) = v’ (s, 4-0) — v (s)
Oy* (2, 0) = 0% (z, H) = 0, 0,,* (z, 0) = 0, * (z, H) = 0
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We note that the stress jump and the derivatives of the displacement on the edges
of the segment equal the corresponding jumps on the edges of the inclusion,
We seek the stress function @* (s, ) in the form of the sum of two functions

Q% (s, n) = D! (s, n) + D* (z, p) (2.2)
Here @' (s, n) defines the solution of S of the problem for an infinite plane with
jumps f; (s) (j = 1, ..., 4) in the stresses and derivatives of the displacement at

the appropriate segment, and ®? (z, y) is the stress function for a continuous inclus-
ion subjected at the side faces to forces equal in magnitude but opposite in sign to
the stresses defined by the function ®* (s, n) on L; (j = 1, 2).
According to [4], the integral representation of the stress function @!(s, ) has
the form o
Q' (s, n) = 51; S GE(n, n)emdy (2.3)

—_—

Gf (on) =14, () +ninld, @lem n>0

Gy (m,n) =1d;(m) 4+ nin| A, ()enin, n 0

Here A; (M) (f = 1, ..., 4) are complex functions.

Using the expressions for the stress tensor components and the derivatives of the
displacement vector in terms of the function @' (s, n) , satisfying the conditions
(1.1), and applying the inverse Fourier transform, we obtain an algebraic system of
equations to determine 4; (W) (j = 1, ..., 4) in the form

—n? 4, (n) — A; ()] = F* (n)
in(n]l—A4,m) + A4, () —A; () — A, (Wl = F* ()
(4, (n) — 24, (0) — 45 (n) — 24, ()] = [F* () +
koF * (W17 Fy
in{n {4, () + 34; (n) — 45 () — 34, ()] =
[F* () + ksFyp* (W17 ky

b
Firn) =\ 0o, ki~

a

(14w
8ty

By = =) G4

T - T
The expressions for the characteristics of the stress-strain state in the problem S*'
in terms of the unknown jumps f; (s) G =1, . .., 4) have the form

{G}nn’ ul’, Vll} =
4 b
L S (Prn(t—s, m), Pu(t—s, n), P,(t—s, m)fs(t)adt
j=1 a
Here P, P, P, are functions having both a singular and a regular part in the
limit case n — 0.
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The function @® (z, y) has the representation [4]

<

@@w=LS&@wﬂw§

Gy (8 y) = [By ( E) + EyB, (§) et 4 [By () + EyB, (B)] &

Here B; (§) (j = 1, ..., 4) are unknown complex functions
Introducing the notation o = cos w, B = sin ®, we obtain from (2, 1) —
(2.3)

N YT
T2 =% @ + B Os? +zﬁasan

22 a2¢1 821 .
gy = ( % om )+( 2—-ﬁ’ = o L; (i=1,2)

Hence, an algebraic fourth-order system follows for the determination of the un-
knowns B; (E) (j = 1, ..., 4). Solving this system we represent the solution of
S? in the form

{o¢ ., u?, ¥} =

4 b
Y A0t s ) Qult s ) Qe s My (B8
=1 a

Here Q,,,., Q,, O, areregular functions,
We determine the stress-strain state of the body under consideration at any of its points
by means of the solutions of S°, S, S?:

O (5, 1) = G (5, 1) + Opol (s, 1) 4 G (5, 1)

Opm (5, 1) = 0,° (5, 1) + 0,1 (s, 1) + G2 (s, )

u' (s, n) = u” (s, n) 4 u' (s, n) + u¥ (s, n)

v (s, n) = 1% (s, n) 4 V¥ (s, n) + ¥ (s, n)
Passing to the limit in (2.4) as 7 ~—> 40, we obtain the following expressions for
the stress and the derivatives of the displacement on the upper edge of the inclusion

(values of the corresponding quantities on the lower edge of the inclusion are determin-
ed from (1,1) and (2, 5)):

Cun (8 10) = 0,,° (8) + Yo fr (5) — myty () — nyty (5) + by (8)  (29)
O, (s, +0) = Gsno (s) + Y fa (s) + myt, (s) — nyts (s) + ks (8)
u' (s, +0) = u’’(s) + Y, fs (s) + myt, (s) + myt, (s) + ks (s)
’(+®*W®+%h®+mﬁ@—mh®+h®
1 ¢ 1t ~
= 75 j

b
i, ki(s)zzgxﬁ(s, nfydt (@ =1,...,4)

J=la

(2.9

Ky (s, 8) = Sy; (Bs, as, ) + S,; (Bs, as, t) cos 2 @ —
S3; (Bs, as, t) sin 2 @

Kyj (s, 8) = S3; (Bs, as, t) sin 2 0 4 Sy; (Bs, as, £) cos 2 @
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Kgjls, &) = —4ImSy; (Bs, as, 1) —ny [Sa; (Bs, as, 1) cos 2 o —
Sy; (Bs. as. ) sin 2 ol

Ky (s, 8) == —4a [m,S,; (Bs, as, 1) — 8,; (Bs, as, £)] —
BllkaSy (Bo. s, ) — kuSuy (b o5, 9]

Si (s gy, 1) = %Q [Mﬁ(w, Y 1, &) — (2.6)
0
H I
Ij(ﬁwmx’a“_“yv "'a—’—t E)]
My (z, 4, t, &) = (Al — AgHyT) [ A, 2.7

My; (z, y, t, &) = (AHy — AyHY) /(240 (=1, 2)
M (x, y, t, &) = (=1 [AgH" + Ay H71/ (2 Ay)
i=23 4 j=120G(=1,k=2;j=2. k=1
{Aris Aoy Agin A ai} = = {An Ay — A — Azl g,

{Ay, Apy — Ay — A o
i=1, @, = nysiny,,¢_ = nzgsin y_
i=2,¢,= — Ny oSy, ¢_= nzCosy_
Y= E@Pt—2) 4+ oy~ B -1 — o
Ay (B) = (Bl — g tH)2 — EX2. A, (B) = e®H — 1
Ay (8, 1) = 2 EH 4 2 atlA; (§). Ay (§) — 2 EH
Ay (8, 8) = 1 — eH 1. 2t £A; (§)
H* (y.t. E) we g-B(alby)
Her (g t.8) = Hyx (y, 1.8 HE,, (0 8 (6= 2,3, 4)
Hyt =y 28 (=) + ()7 exp (F28H — o)
j=1,2.3, rp=r,=—=1.7ry =05
my, = (ky/ by — 3/ 4, my = (ky 4 kg — & kymy) / 4
ny = Y4k ng == (ky/ ky — 3Y/ 4, ng = (ke/ly + D4

The functions Af;; («, y, t, §) (i =1, ..., 4) are determined by means of(2,7)
for ¢, = 4 siny,, ¢_ = - sin y_ (the first sign corresponds to j = 3 andthe

second to  j = 4).

8. The relationships (2, 5) and the interaction conditions between the thin-walled
elastic inclusion and the matrix (1. 2) result in a system of singular integral equations

fa (s) + Anta (s) — Ay f fo () dt -+ Ry (s) = Fi(s) (8.1

hd

ta(5) + harta(s) — s § Fa () dt + Ra(s) = Fa(s)

a

4 () + Aaate (5) + | [hafa (2) -+ Mfs ()] dE 4 Ra () = Fa(s)
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fa () = — ksof( (5), s = la, b]

Ry () = Mgky (5) — highs (5), Ry (s) = hagky (s) + Aosky ()
Rs (s) = hgeky (8), Fy (5) = [kl()Na — U (8) — kaoTny (817 A
Fols) = po 07 () —0,°(8)/ g — ./ 2RI/ A,

Fy(s) = [0,0° () + dy / (2 Bkyg) — volN 1/ Ag

My = (dmy —Fkyo/ k) / (AA), Ma =kao/ Ay Mg =1/ A
Aoy = (Momme — my)/Asgy Aoz = 1/As, hag = pofA,

Ayy = my/ A,

Moo = 1/ Ay, by = ki / (2RA), A = po/ (2 hAAy)

Ay = v/ (2hAy), M = —1/ (2 hkyA,)

Ay = my — kygmy, Ay = (ny — mypy), Ay =ny

The required functions satisfy the additional conditions (3, 2)

b
| B
(hiwa=a G=1,..., % 3.2

At :O, A% = 2/&(1’\’2,'—' ‘Na)9 A3 = Cp — Cpgy At = db — da

The normal stresses on the inclusion endfaces, as well as the displacements ¢, d,
(s = a, b) of the lower point of the endface of the inclusion relative to its upper
points are evaluated by means of formulas in [3].

In the case of an absolutely rigid inclusion £, — oo , the system (3. 1) is convert-
ed to the form

Mty (5) — kg (8) = —0° (s)y oty () — Iy (s) = —u® (s) (3.3)
B =) =0, sela b]

When E; — 0, we obtain a system of singular integral equations fora crack in the
strip
nyty (s) + ky (s) = 05° (s} myty (s) -+ kg () = 0p5° (s) (3.4)
his) =1f06)=0 sela, b
Equations (3, 4) agree with the results obtained in [5]
If H is allowed to tend to infinity in the integral equations (3. 1), then we obtain

the solution of the problem for a half-plane with an inclusion, In this case the
Fredholm kernels S;; (z, ¥, ¢, E) (2.6) are evaluated in closed form,

4. We seek the solution of the system of singular integial equations (3. 1) in the
form

O = |40+ Y AL®]| VITE (=t n @D

n==1

E=@2s—a—0b)/ (b —a)
Here T, (§) are Chebyshev (Tschebyscheff) polynomials of the first kind, Substituting
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(4.1) into conditions (3, 2) and integrating, we obtain 4, = A7/ [7271(h — a)].

Substitution of the series (4. 1) into the system of integral equations (3, 1) and the
ordinary procedure of the method of orthogonal polynomials [6, 7] result in a system of
algebraic equations to determine the desired expansion coefficients;

x o : 4 . )
- A4t 4 Z {("Nm% 4+ MBpy, k~z) A+ 2 HY k-lAn]] = Fi, .2
=

n=1
1 - ’ n 4 .
2 Aaidy! + Z {:(6”“ -5+ AaBry, k—z) A+ Z HY ey Anj] = Fia
n=i ’ =1
Z Kéfmiz‘" Ay By, k—z) At + Ay —nf — Ag'Brey, k=) 4n® +
n=1
4 - Py
PR k.lAn’] - Fy,
J=1
AP = kAt =12, ...

4
Fii = @i — /8,451 — D) HGAY (1= 1, 2)

j=1

4
Fid = O2 + (v A + ' Ao & — ) HitAJ

=1

1
o = | @U@V T—Tdg
-1

@ (D) = Fi (D) + AN/ (b —a) (i =1,2)
@3 (D) = F5 (D) — (A/'A% 4 M'AH/ (b — )

1 1
By, k= n? — k& nf— (k—2)

. (bwa)
n = 85

1 1
=\ U VT=T K@ 070 5
—-1 -1
Here U, (}) are Chebyshev polynomials of the second kind, 8y == 0 for even k
and §, = B_; j for odd k.

As an illustration, let us consider the case of equlibrium of a strip with a thin-wall-
ed elastic incjusion of length 2e located on the line of symmetry of a strip subjected
to constant normal forces on its faces oy (2, 0) = oyy (z, H) = ¢.

In this case A7 =0, ¢p (L) = Fp (D, Fo (D) =0 =1, ..., 4 p=1,2,3),
and F, (1) and F. () are odd functions, There then follows from the system (4, 2)

e A 4.3)
HE = N A T @ [VTZB (=29 (
n=1

i) =fa(s) =0, A =A43=0, Ap?=An'=0 (k=1, 2,.)

Lyren
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The stress intensity coefficients at the right endface of the inclusion are determined
from the formulas

kot (a), kot (@)} = lim [Va — s {Onn (s, &= 0), Osp (s, = O}
8—a-0

{k+1 (a)v k+2 (a)} =slianl+o[VS —a {o‘n'n (S, 0)1 Osn (31 0)}]

l e ol e In the case under consfdera-ﬁon, the systefn
| of singular integral equations is solved numeric-
| 0.3 ally. To achieve a 2% accuracy in the calcula-
‘\ / tions for different values of the relative width of
\ 07 / the strip H/a from 15 to 40 terms in the
\ [ - expansion (4, 3) are required, The convergence
\ - of the calculation process was investigated by
\, ¢t f‘/ comparing the last and its preceding approxima-
) N { / tions, Results of a calculation of the dependence
~ of the stress intensity coefficients % and &,

w? wl o ou 07 1p?  4p% on the relative rigidity of the inclusion E,/ E,;
[o/ £,  are represented in Fig, 2. The solid line corres-

Fig, 2 ponds to k, and the dashed one to k.
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